Lesuitval, een mondkapjesplicht, onzekerheid over de eindexamens... de coronacrisis heeft een grote impact op jongeren. Wij zijn benieuwd hoe jij ermee omgaat en wat jij vindt van de maatregelen. Doe mee met ons corona-onderzoek! 😷🦠🏫

Doe mee


ADVERTENTIE
1500 euro winnen met je pws of sectorwerkstuk?

Check de online masterclasses van het Rijksmuseum waarin experts hun kennis en tips delen, zodat jij tot een goed onderwerp komt. En wist je dat je mee kunt doen aan de Rijksmuseum Junior Fellowship wedstrijd? Je maakt dan met jouw pws of sectorwerkstuk kans op 1500 euro en een traineeship!

Samenvatting hoofdstuk 3 ‘Kracht en Moment’



3.1 Kracht als vector

Een kracht kan een voorwerp tijdelijk of blijvend vervormen. Een kracht kan aan een voorwerp een snelheidsverandering geven. Kracht is een vector. Kracht heeft ook een richting. Een pijl geeft de vector aan, in Newton. A=aangrijpingspunt.



3.2 Krachten in evenwicht

Een voorwerp blijft op zijn plaats als de krachten die op het voorwerp werken een resultante hebben die 0 is ( de krachten heffen elkaars werking dan op)



3.3 Eerste wet van Newton (wet van traagheid)

Op een voorwerp dat met constante snelheid rechtdoor blijft bewegen werk geen resulterende kracht. Dus als een voorwerp gen resulterende kracht ondervindt veranderd de snelheid ervan niet. Stilstaan wordt hierin gezien als een bijzondere manier van ‘eenparig rechtlijnig bewegen’ namelijk v = constant = 0



Een voorwerp heeft de neiging de toestand van rust, of de toestand van eenparig rechtlijnig bewegen, te handhaven, dus een voorwerp heeft de neiging zich te verzetten tegen een snelheidsverandering. Dat is de traagheid van het voorwerp.

Massa is traag dus een grotere massa zorgt voor een grotere traagheid.

Zwaartekracht (= gewicht): aantrekkende kracht die de aarde op een voorwerp

uitoefent. Newton

Massa (=traagheid): is een eigenschap van het voorwerp kilogram



3.4 Tweede wet van Newton

Een constante resulterende kracht veroorzaakt een constante versnelling.

De versnelling is recht evenredig met de resulterende kracht (=gelijk aan) a ~ Fr

De versnelling is omgekeerd evenredig met de massa à a ~ 1/m

Deze kun je samenvoegen tot a ~ Fr/m en hieruit volgt dan de formule

Fr = m ∙ a 1N = 1kg ∙ m/s²



3.5 Zwaartekracht, normaalkracht, veerkracht en spankracht



Krachten:Fr = KrachtFz = ZwaartekrachtFn = NormaalkrachtFv = VeerkrachtFs = SpankrachtFw = Wrijvingskracht





Een voorwerp met de massa m ondervindt een zwaartekracht van Fz = m ∙ g

Hierin is g de valversnelling op aarde (= 9,8 m/s² )

De normaalkracht is als het voorwerp op de grond staat gelijk aan de zwaartekracht.



3.6 Schuifwrijving, rolwrijving en luchtwrijving

Op een bepaalde waarde van de trekkracht staat een voorwerp op het punt om in beweging te komen. De wrijvingskracht heeft dan de maximale waarde bereikt.

Fw à Fw, max

Om het voorwerp vervolgend in beweging te brengen moet de trekkracht heel even iets groter zijn dan Fw, max om het in beweging te zetten, vervolgend=s gaat het voorwerp verder met constante snelheid als Fr ~ Fw, max

Rolwrijving komt door de vervorming van het voorwerp dat rolt, bijvoorbeeld fietsbanden. De grootte van de rolwrijving wordt bepaald door:

- de vervormbaarheid van de contactoppervlakten

- De kracht waarmee de contactoppervlakten tegen elkaar gedrukt worden.



Bij een snelheid van 15 km/u heb je te maken met een ‘tegenwind’ van 15 km/u.

Luchtweerstand is afhankelijk van de snelheid, 2x zo grote snelheid is 4x zo grote luchtweerstand. Er moet bij auto’s gelet worden op:

- frontale oppervlakte (oppervlakte dat dwars op de voortbewegingsrichting staat)

- vorm van de auto (goede stroomlijning)



3.7 Zwaartepunt

De denkbeeldige rechte waarop een krachtvector ligt wordt een werklijn genoemd.

Een voorwerp waarop twee krachten werken kan alleen in rust zijn als beide krachten even groot zijn en bovendien samenvallende werklijnen hebben.

Zwaartepunt = Z = onafhankelijk van de stand van het voorwerp. (Hoeft niet altijd op het voorwerp te liggen).

Homogeen = overal dezelfde dichtheid. Als er een symmetrievlak is ligt het zwaartepunt in dat vlak.



3.8 Moment van een kracht

Niet alleen de grootte van de kracht speelt een rol, maar ook de afstand van het draaipunt naar de werklijn van de kracht, dit noemt men de arm van de kracht (r).

Deze afstand moet loodrecht zijn.

Vaak geld hoe groter de arm hoe kleiner de kracht die moet worden uitgeoefend.

Het moment van een kracht ten opzichte van het draaipunt is het product van ‘kracht en arm’ M = F ∙ r M in Nm (Newtonmeter)

Moment is positief (+) tegen de klok in en negatief (-) met de klok mee.



3.9 Hefboom en hefboomwet

Hefbomen: voorwerpen die om een as draaien.

Moment van links en rechts moten even groot zijn om het voorwerp in rust te houden.

Ml = +Fl ∙ r l en Mr = -Fr ∙ rr

De kracht mag overal op de werklijn liggen, dit maakt geen verschil, de arm blijft namelijk even groot.

Is de hefboom onder de werking van krachten in evenwicht dan is de som van de krachten ten opzichte van het draaipunt nul. ∑ M = 0



3.10 Toepassingen van de hefboom(wet)

Je kunt met een kleine kracht een grote overwinnen (notenkraker)

Door middel van tandwielen (met of zonder ketting) is het mogelijk krachten over te brengen. Hierbij wordt de draaiende beweging van de ene naar de andere as overgezet.

Verandering van het toerental is te berekenen met: n¹ ∙ z¹ = n² ∙ z²

(n=toerental, z=aantal tanden per tandwiel)

toerental en diameters v/d wilen: n¹ ∙ d¹ = n² ∙ d²

Een voorwerp is in evenwicht als de volgende voorwaarden gelden:

∑ F = 0 en ∑ M = 0 (ten opzichte van het draaipunt)



Samenvatting hoofdstuk 6 ‘De werking van het oog’



6.1 Bouw van het oog; accommodatie van het oog

Onderdelen van het oog en hun functie (zie ook bijlage):

- Harde oogrok: stevigheid, ‘het oogwit’

- Hoornvlies: doorzichtig

- Vaatvlies: bloedvoorziening (rode ogen op foto)

- Iris: spieren zorgen voor het groter/kleiner worden van de pupil.

- Pupil: opening tussen irissen. 2mm tot 8mm (meestal 4mm)

- Netvlies: de ‘gezichtscellen’ niet gelijkmatig verdeeld

- Gele vlek: grootste concentratie ‘gezichtscellen’ scherp zien.

- Blinde vlek: waar oogzenuwen de oogbol verlaten, ongevoelig voor licht

- Ooglens: elastische massa, kan accommoderen

- Oogkamer: gevuld met heldere kleurloze vloeistof

- Glasachtig lichaam: gevuld met geleiachtige doorzichtige massa.

Verschillende onderdelen van het oog zorgen voor de sterk convergerende werking. Van een voorwerp wordt een reëel, omgekeerd, verkleind beeld gemaakt.

K = knooppunt = optisch middelpunt van het oog.

Lensformule: 1/v + 1/b = 1/f (f kan veranderen = accommoderen)

Het oog heeft een kringspier die zorgt voor het boller, en minder bol maken v/d lens.



lens Accommodatie Werking Bril Brandpuntsafstand

Bol Sterk Convergerend + Positief

Hol zwak Divergerend - negatief



6.2 Nabijheidspunt en vertepunt; oudzientheid

De sterkte van de lens: S= 1/f met f in meter.

De eenheid van lenssterkte is dioptrie (dpt) 1 dpt = 1mˉ¹

L moet tussen twee bepaalde waarden liggen om gezien te kunnen worden.

Vertepunt = dat wat het ongeaccommodeerde oog scherp kan zien.

Nabijheidspunt = dat wat het maximaal geaccommodeerde oog scherp kan zien.

Bij een normaal oog ligt het vertepunt in het oneindige. Vo = ∞

Als de leeftijd van de mens toeneemt is de elasticiteit van de oorlens af, daardoor kan de oorlens niet meer bol genoeg gemaakt worden, waardoor het nabijheidspunt verder van het oog af komt te liggen. Hievoor wordt er een positieve lens voor het oog geplaatst.

Als een oog een nabijheidspunt van 50cm en de opticien wil dit op 30cm leggen, dan is v =30 en b= -50 (b = virtueel) met de formule kom je uit op f = + 75cm, dus 1,3dpt.



6.3 Bijziendheid en verziendheid

(Kijk ook naar bijlage)

Bijziend Verziend Oudziend

bril - + +

Bril voor: Ver weg Zowel dichtbij als ver weg Dichtbij

Nabijheidspunt Te dichtbij (niet erg) Te ver weg Te ver

Vertepunt Te dichtbij (erg) Te ver weg (achter het oog) Goed

convergerend Te sterk Te zwak /



6.4 Gezichtshoek; loep; werking van de pupil

Je ziet een voorwerp groter als het dichter bij het oog staat. Je ziet het voorwerp dan onder een hoek: de gezichtshoek is dan groter. Daardoor is ook het netvliesbeeld groter. Je ziet een voorwerp het scherpst als het op het nabijheidspunt staat. (gezichtshoek en netvliesbeeld het grootst).

Een loep zorgt ervoor dat je binnen je nabijheidspunt toch scherp ziet. Een loep is een positieve lens die je vlak voor je oog houdt. Omdat de loep convergerend werkt legt deze het nabijheidspunt dichter bij het oog en kun je dus het voorwerp dichter bij houden. Je houdt het voorwerp op F

De hoekvergroting of de angulaire vergroting is de vergroting van de hoek waar de loep voor zorgt (α of β)

Als je het voorwerp binnen het brandvlak houdt wordt de gezichtshoek nog groter, wel moet het oog dan accommoderen en dat is vermoeiend.

De verlichtingssterkte moet goed zijn om te kunnen zien. Deze wordt uitgedrukt in lux. Voor lezen is ongeveer 200lux nodig. Voor secuur werk heb je zeker 1000lux nodig. De pupil kan de hoeveelheid licht die in het oog komt veranderen.


REACTIES

Er zijn nog geen reacties op dit verslag. Wees de eerste!

Log in om een reactie te plaatsen of maak een profiel aan.